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13.1 Let (S, g) be a 2-dimensional Riemannian manifold and let p ∈ S. For any 0 < r < ι(p), we
will denote with Lr the length of the �circle� of points of distance equal to r from p. Show that
the sectional cruvature at p satis�es

K(p) = lim
r→0

3

π

2πr − Lr

r3
,

(note that 2πr is simply the length of a Euclidean circle of radius r). (Hint: You might want
to use Exercise 10.1 about the expression of g in polar coordinates around p.

13.2 Let (S, g) be a 2-dimensional connected and complete Riemannian manifold and let p ∈ S.

(a) Let γ : [0,+∞) → S be a unit-speed geodesic such that γ(0) = p and let n̂ ∈ Γγ be a
unit vector�eld along γ which is orthogonal at every point to γ̇. Show that n̂ is parallel
transported along γ. (Hint: Compute the projections of ∇γ̇n̂ on γ̇ and n̂. Note that here
one has to make use of the fact that the dimension of Tγ(t)S is 2.)

(b) With γ and n̂ as above, let J ∈ Γγ be a Jacobi vector �eld such that J(0) = 0 and J ⊥ γ̇.
Show that J(t) = f(t)n̂(t) for some f : [0,+∞) → R satisfying{

f ′′ +Kf = 0,

f(0) = 0, f ′(0) = ⟨∇γ̇J, n̂⟩|t=0,

where K(t) = K|γ(t) is the sectional curvature. Show that the ratio

λ(t)
.
=

f ′(t)

f(t)

(de�ned at all point where J(t) ̸= 0) satis�es the Ricatti type equation

λ′ = −K − λ2.

(c) Assume that the curvature of (S, g) satis�es everywhere the lower bound

K ⩾ 1. (1)

Show that along any geodesic γ as above, p has a conjugate point γ(t∗) for some t∗ ⩽ π. (Hint:
Show that λ(t) satis�es the di�erential inequality d

dt
Arctan(λ(t)) ⩽ −1 with initial condition

tλ(t)
t→0+−−−→ 1.)

(d*) Assume that on a Riemannian surface (S, g) as above (satisfying, in particular, (1)), there exists
a point p with injectivity radius satisfying ι(p) ⩾ π. Show that (S, g) is isometric to (S2, g).
(Hint: Show �rst that the curvature K has to be everywhere equal to 1.)
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13.3 Let (M, g) be a Riemannian manifold. For any smooth vector �eld X ∈ Γ(M), we will de�ne
the divergence divX of X to be the function de�ned as the contraction

divX
.
= tr∇X = (∇iX)i.

Similarly, for any ω ∈ Γ∗(M), we will de�ne

divω
.
= div(ω♯).

Note that, in local coordinates,
divω = gij(∇iω)j.

In this exercise, we will generalise the well-known divergence identity from multivariable calcu-
lus to the Riemannian setting. To this end, let ω be a smooth 1-form on M and Ω ⊂ M be an
open domain with compact closure and with a (possibly empty) piecewise smooth boundary
∂Ω. Let also n̂ be the unit normal to ∂Ω pointing out of Ω and ḡ be the induced metric on ∂Ω
(both de�ned at every point where ∂Ω is smooth). Our aim is to show that

�
Ω

divω dVolg =

�
∂Ω

ω(n̂) dVolḡ (2)

(a) Show that, in any local coordinate system, divω takes the form

divω =
1√
det g

∂i
(
gij

√
det gωj

)
.

Hint: You might want to use the following formmula from linear algebra regarding the
derivative of the determinant of a matrix-valued function: If A = A(s) is a family of
matrices, then

d

ds
detA = detA · tr

(
A−1dA

ds

)
.

(b) Assume that Ω has the property that clos(Ω) is covered by a cooridnate chart (x1, . . . , xn),
with respect to which it is of the form

Ω =
n⋂

i=1

{
ai− < xi < ai+

}
for some constants ai− < ai+, i = 1, . . . , n (i.e. Ω is a coordinate box). Note that, in this
case,

∂Ω =
1⋃

i=1

S
(i)
+ ∪ S

(i)
− , where S

(i)
± = {xi = ai±} ∩ {aj− ⩽ xj ⩽ aj+, j ̸= i}.

Show that, in this case, (2) holds. (Hint: Compute �rst n̂ and ḡ on S
(i)
± . Recall that

dVolg =
√
det g dx1 . . . dxn.)

Page 2



EPFL� Spring 2025

Series 13

Di�erential Geometry III:

Riemannian Geometry
G. Moschidis

23 May 2025

(c) Show that (2) holds for a general domain Ω with compact closure and with piecewise
smooth boundary ∂Ω. You might use as given the fact that any such domain Ω can be
written as a �nite union of coordinate boxes as in the previous step, i.e. there exists a
�nite number of open sets Ωα ⊂ Ω satisfying the following properties:

1. ∪αclos(Ωα) = clos(Ω),

2. Ωα ∩ Ωβ = ∅ if α ̸= β,

3. For each Ωα, there exists a coordinate system around Ωα with respect to which Ωα

satis�es the assumptions of the previous step.

13.4 (The Bochner technique). Let (M, g) be a Riemannian manifold. For any smooth function
f : M → R, we will de�ne the Laplacian ∆gf of f by the formula

∆gf
.
= div(df).

(a) Show that ∆gf = gijHess[f ]ij.

(b) Show that if M is compact, then

�
M

∆gf dVolg = 0.

Hint: Use Exercise 13.3.

(c*) Let X be a vector �eld on M. Show that

∆g⟨X,X⟩ = 2∥∇X∥2 − 2X(divX) + 2⟨div1(∇X)ant, X⟩ − 2Ric(X,X), (3)

where (
(∇X)ant

)j
i
= (∇iX)j + gjlgim(∇lX)m,(

div1(∇X)ant
)j

= gkl
(
∇k(∇X)ant

)j
l

and
∥∇X∥2 = gijgkl∇iX

k∇jX
l.

Hint: You can start from the relation
(
d⟨X,X⟩

)
i
= 2⟨∇iX,X⟩ and calculate its divergence.

(d*) Let X be a Killing vector �eld on (M, g) (recall that this implies that ∇iXj +∇jXi = 0).
Show that (∇X)ant = 0 and divX = 0. Show that if M is connected and compact and
the Ricci curvature satis�es for any p ∈ M and any V ∈ TpM\ 0

Ric(V, V ) < 0,

then X has to be identically 0 (Hint: Integrate (3) over M.). Deduce that the group of
isometries of a compact Riemannian manifold with negative Ricci curvature is discrete.
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